Journal of Applied Sciences and Environmental Management (May 2018)
Mathematical model for the control of infectious disease
Abstract
We proposed a mathematical model of infectious disease dynamics. The model is a system of first order ordinary differential equations. The population is partitioned into three compartments of Susceptible S(t) , Infected I(t) and Recovered R(t). Two equilibria states exist: the disease-free equilibrium which is locally asymptotically stable if Ro 1. Numerical simulation of the model shows that an increase in vaccination leads to low disease prevalence in a population. Keywords: Infectious Disease, Equilibrium States, Basic Reproduction Number
Keywords