Sensors (Jul 2021)

Performance of Linear Mixed Models to Assess the Effect of Sustained Loading and Variable Temperature on Concrete Beams Strengthened with NSM-FRP

  • Ricardo Perera,
  • Lluis Torres,
  • Francisco J. Díaz,
  • Cristina Barris,
  • Marta Baena

DOI
https://doi.org/10.3390/s21155046
Journal volume & issue
Vol. 21, no. 15
p. 5046

Abstract

Read online

Although some extended studies about the short-term behavior of NSM FRP strengthened beams have been carried out, there is a lack of knowledge about the behavior of this kind of strengthening under sustained loads and high service temperatures. Electromechanical impedance method formulated from measurements obtained from PZT patches gives the ability for monitoring the performance and changes experienced by these strengthened beams at a local level, which is a key aspect considering its possible premature debonding failure modes. This paper presents an experimental testing program aimed at investigating the long-term performance of a concrete beam strengthened with a NSM CFRP laminate. Long term performance under different levels of sustained loading and temperature conditions is correlated with EMI signatures processed using Linear Mixed-effects models. These models are very powerful to process datasets that have a multilevel or hierarchical structure as those yielded by our tests. Results have demonstrated the potential of these techniques as health monitoring methodology under different conditions in an especially complex problem such as NSM-FRP strengthened concrete structures.

Keywords