PLoS ONE (Jan 2024)

Strain prevalence and killer factor only partially influence the fermentation activity of pairwise Saccharomyces cerevisiae wine strains inoculation.

  • Jacopo Sica,
  • Chiara Vendramini,
  • Chiara Nadai,
  • Zeno Molinelli,
  • Milena Carlot,
  • Alessio Giacomini,
  • Viviana Corich

DOI
https://doi.org/10.1371/journal.pone.0300212
Journal volume & issue
Vol. 19, no. 4
p. e0300212

Abstract

Read online

Commercial Saccharomyces cerevisiae starters are single-strain cultures widely used in winemaking to optimise the fermentation process and improve the organoleptic quality of wine. Unfortunately, the worldwide extensive use of a limited number of industrial strains led to the standardisation of the sensory properties, reducing the identity of wines. Therefore, the use of multi-strain S. cerevisiae starters can be an alternative tool to alter the sensory profile of wines, increasing the diversity of wine styles. However, this strategy may be interesting only if the overall fermentation kinetics is not affected. To date, there is a lack of information regarding the influence of multi-strain starters on the overall fermentation process in wine. In this context, killer toxins, affecting the viability of sensitive strains, can play a significant role. This study aimed to evaluate the effects of pairing eight wine strains of S. cerevisiae (two sensitive, three neutral and three killer) in co-fermentations compared to single-strain fermentations. Results evidenced that, among co-fermentations where the strain prevalence was significant, the killer strains constituted 79% to 100% of the total yeast population when co-inoculated with a sensitive one. However, in most of the cases, co-fermentations kinetics were similar to those of sensitive strains or worse than both strains. Thus, the presence of a killer strain alone is not sufficient to predict the overall fermentation progress, which is an essential information in winemaking. Interestingly, the neutral strain P304.4 was always prevalent, regardless of the second strain and, in most of the co-fermentations, the overall fermentation trend was similar to the P304.4 single-strain fermentation. Regardless of killer activity, our results suggest that the effect of strains on fermentative kinetics is still unpredictable, and further studies are needed to thoroughly explore strain to strain interactions in winemaking.