SciPost Physics Proceedings (Feb 2020)
Fluctuations of work in realistic equilibrium states of quantum systems with conserved quantities
Abstract
The out-of-equilibrium dynamics of quantum systems is one of the most fascinating problems in physics, with outstanding open questions on issues such as relaxation to equilibrium. An area of particular interest concerns few-body systems, where quantum and thermal fluctuations are expected to be especially relevant. In this contribution, we present numerical results demonstrating the impact of conserved quantities (or ‘charges’) in the outcomes of out-of-equilibrium measurements starting from realistic equilibrium states on a few-body system implementing the Dicke model.