Bulletin of the National Research Centre (Oct 2020)

Bio-aviation fuel via catalytic hydrocracking of waste cooking oils

  • R. El-Araby,
  • E. Abdelkader,
  • G. El Diwani,
  • S. I. Hawash

DOI
https://doi.org/10.1186/s42269-020-00425-6
Journal volume & issue
Vol. 44, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background Biomass fuels (bio-jet fuel) have recently attracted considerable attention as alternatives to conventional jet fuel. They have become the focus of aircraft manufacturers, engines, oil companies, governments and researchers alike. This study is concerned with the production of biojet fuel using waste cooking oil (WCO). Batch reactor is used for running the experimental study. The catalytic cracking products are investigated by GC mass spectra. Final products from different reaction conditions are subjected to fractional distillation. The (Bio kerosene) fraction was compared with the conventional jet A-1 and showed that it met the basic jet fuel specifications. Optimum reaction conditions are obtained at (450 °C), pressure of (120 bars), catalyst dose (2.5% w/v), reaction time (60 min) and hydrogen pressure 4 atmosphere. The aim of this study is to produce bio aviation fuel according to specifications and with a low freezing point from waste cooking oil in one step using a laboratory prepared catalyst and with a low percentage of hydrogen to complete the process of cracking and deoxygenation in one reactor, which is naturally reflected positively on the price of the final product of bio aviation fuel. Results The results indicated that the product obtained from WCO shows promising potential bio aviation fuels, having a low freezing point (− 55 °C) and that all bio kerosene’s specifications obtained at these conditions follow the international standard specifications of aviation turbine fuel. Conclusion Biojet fuel obtained from WCO has fairly acceptable physico-chemical properties compared to those of petroleum-based fuel. Adjustment of the hydro catalytic cracking reaction conditions was used to control quantities and characteristics of produced bio aviation fuel. Taking into consideration the economic evaluation WCO is preferable as raw material for bio aviation fuel production due to its low cost and its contribution in environmental pollution abatement. Blend of 5% bio aviation with jet A-1 (by volume) can be used in the engine without any modifications and a successful test of blended aviation fuel with 10% bio aviation has been achieved on Jet-Cat 80/120 engine.

Keywords