Scientific Reports (Jan 2023)
Error-based and reinforcement learning in basketball free throw shooting
Abstract
Abstract This study investigates the effects of error-based and reinforcement training on the acquisition and long-term retention of free throw accuracy in basketball. Sixty participants were divided into four groups (n = 15 per group): (i) the error-based group (sensory feedback), (ii) the reinforcement group (binary feedback including success or failure), (iii) the mixed group (sensory feedback followed by binary feedback), and (iv) the control group (without training). Free throws success was recorded before training (PreT), immediately after (Postd0), one day later (Postd1), and seven days later (Postd7). The error-based group, but not the reinforcement group, showed a significant immediate improvement in free throw accuracy (PreT vs Postd0). Interestingly, over time (Postd0 vs Postd1 vs Postd7), the reinforcement group significantly improved its accuracy, while the error-based group decreased it, returning to the PreT level (PreT vs Post7). The mixed group showed the advantage of both training methods, i.e., fast acquisition and retention on a long-term scale. Error-based learning leads to better acquisition, while reinforcement learning leads to better retention. Therefore, the combination of both types of learning is more efficient for both acquisition and retention processes. These findings provide new insight into the acquisition and retention of a fundamental basketball skill in free throw shooting.