Computational and Structural Biotechnology Journal (Jan 2021)
Synergistic alterations in the multilevel chromatin structure anchor dysregulated genes in small cell lung cancer
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer that uniquely changes the chromosomal structure, although the basis of aberrant gene expression in SCLC remains largely unclear. Topologically associated domains (TADs) are structural and functional units of the human genome. Genetic and epigenetic alterations in the cancer genome can lead to the disruption of TAD boundaries and may cause gene dysregulation. To understand the potential regulatory role of this process in SCLC, we developed the TAD boundary alteration–related gene identification in tumors (TARGET) computational framework, which enables the systematic identification of candidate dysregulated genes associated with altered TAD boundaries. Using TARGET to compare gene expression profiles between SCLC and normal human lung fibroblast cell lines, we identified >100 genes in this category, of which 24 were further verified in samples from patients with SCLC using NanoString. The analysis revealed synergistic chromatin structure alteration at the A/B compartment and TAD boundary levels that underlies aberrant gene expression in SCLC. TARGET is a novel and powerful tool that can be used to explore the relationship of chromatin structure alteration to gene dysregulation related to SCLC tumorigenesis, progression, and prognosis.