PLoS ONE (Jan 2020)
Ganglion cells and displaced amacrine cells density in the retina of the collared peccary (Pecari tajacu).
Abstract
In the present study, we investigated the topographical distribution of ganglion cells and displaced amacrine cells in the retina of the collared peccary (Pecari tajacu), a diurnal neotropical mammal of the suborder Suina (Order Artiodactyla) widely distributed across central and mainly South America. Retinas were prepared and processed following the Nissl staining method. The number and distribution of retinal ganglion cells and displaced amacrine cells were determined in six flat-mounted retinas from three animals. The average density of ganglion cells was 351.822 ± 31.434 GC/mm2. The peccary shows a well-developed visual streak. The average peak density was 6,767 GC/mm2 and located within the visual range and displaced temporally as an area temporalis. Displaced amacrine cells have an average density of 300 DAC/mm2, but the density was not homogeneous along the retina, closer to the center of the retina the number of cells decreases and when approaching the periphery the density increases, in addition, amacrine cells do not form retinal specialization like ganglion cells. Outside the area temporalis, amacrine cells reach up to 80% in the ganglion cell layer. However, in the region of the area temporalis, the proportion of amacrine cells drops to 32%. Thus, three retinal specializations were found in peccary's retina by ganglion cells: visual streak, area temporalis and dorsotemporal extension. The topography of the ganglion cells layer in the retina of the peccary resembles other species of Order Artiodactyla already described and is directly related to its evolutionary history and ecology of the species.