Molecules (Oct 2021)

Effect of Nitrogen Doping on the Optical Bandgap and Electrical Conductivity of Nitrogen-Doped Reduced Graphene Oxide

  • Gunawan Witjaksono,
  • Muhammad Junaid,
  • Mohd Haris Khir,
  • Zaka Ullah,
  • Nelson Tansu,
  • Mohamed Shuaib Bin Mohamed Saheed,
  • Muhammad Aadil Siddiqui,
  • Saeed S. Ba-Hashwan,
  • Abdullah Saleh Algamili,
  • Saeed Ahmed Magsi,
  • Muhammad Zubair Aslam,
  • Rab Nawaz

DOI
https://doi.org/10.3390/molecules26216424
Journal volume & issue
Vol. 26, no. 21
p. 6424

Abstract

Read online

Graphene as a material for optoelectronic design applications has been significantly restricted owing to zero bandgap and non-compatible handling procedures compared with regular microelectronic ones. In this work, nitrogen-doped reduced graphene oxide (N-rGO) with tunable optical bandgap and enhanced electrical conductivity was synthesized via a microwave-assisted hydrothermal method. The properties of the synthesized N-rGO were determined using XPS, FTIR and Raman spectroscopy, UV/vis, as well as FESEM techniques. The UV/vis spectroscopic analysis confirmed the narrowness of the optical bandgap from 3.4 to 3.1, 2.5, and 2.2 eV in N-rGO samples, where N-rGO samples were synthesized with a nitrogen doping concentration of 2.80, 4.53, and 5.51 at.%. Besides, an enhanced n-type electrical conductivity in N-rGO was observed in Hall effect measurement. The observed tunable optoelectrical characteristics of N-rGO make it a suitable material for developing future optoelectronic devices at the nanoscale.

Keywords