Polish Journal of Chemical Technology (Jun 2016)
Mechanical and thermal properties of tungsten carbide – graphite nanoparticles nanocomposites
Abstract
Previous studies concerning pure tungsten carbide polycrystalline materials revealed that nanolayers of graphite located between WC grains improve its thermal properties. What is more, pressure-induced orientation of graphene nano platelets (GNP) in hot pressed silicon nitride-graphene composites results in anisotropy of thermal conductivity. Aim of this study was to investigate if addition of GNP to WC will improve its thermal properties. For this purpose, tungsten carbide with 0.5–6 wt.% of GNP(12)-additive underwent hot pressing. The microstructure observations performed by SEM microscopy. The anisotropy was determined via ultrasonic measurements. The following mechanical properties were evaluated: Vickers hardness, bending strength, fracture toughness KIc. The influence of GNP(12) addition on oxidation resistance and thermal conductivity was examined. It was possible to manufacture hot-pressed WC-graphene composites with oriented GNP(12) particles, however, the addition of graphene decreased both thermal and mechanical properties of the material.
Keywords