Diagnostics (Nov 2021)

Deep Learning-Based Microscopic Diagnosis of Odontogenic Keratocysts and Non-Keratocysts in Haematoxylin and Eosin-Stained Incisional Biopsies

  • Roopa S. Rao,
  • Divya B. Shivanna,
  • Kirti S. Mahadevpur,
  • Sinchana G. Shivaramegowda,
  • Spoorthi Prakash,
  • Surendra Lakshminarayana,
  • Shankargouda Patil

DOI
https://doi.org/10.3390/diagnostics11122184
Journal volume & issue
Vol. 11, no. 12
p. 2184

Abstract

Read online

Background: The goal of the study was to create a histopathology image classification automation system that could identify odontogenic keratocysts in hematoxylin and eosin-stained jaw cyst sections. Methods: From 54 odontogenic keratocysts, 23 dentigerous cysts, and 20 radicular cysts, about 2657 microscopic pictures with 400× magnification were obtained. The images were annotated by a pathologist and categorized into epithelium, cystic lumen, and stroma of keratocysts and non-keratocysts. Preprocessing was performed in two steps; the first is data augmentation, as the Deep Learning techniques (DLT) improve their performance with increased data size. Secondly, the epithelial region was selected as the region of interest. Results: Four experiments were conducted using the DLT. In the first, a pre-trained VGG16 was employed to classify after-image augmentation. In the second, DenseNet-169 was implemented for image classification on the augmented images. In the third, DenseNet-169 was trained on the two-step preprocessed images. In the last experiment, two and three results were averaged to obtain an accuracy of 93% on OKC and non-OKC images. Conclusions: The proposed algorithm may fit into the automation system of OKC and non-OKC diagnosis. Utmost care was taken in the manual process of image acquisition (minimum 28–30 images/slide at 40× magnification covering the entire stretch of epithelium and stromal component). Further, there is scope to improve the accuracy rate and make it human bias free by using a whole slide imaging scanner for image acquisition from slides.

Keywords