Micromachines (Jun 2020)
Suppression of Surface Waviness Error of Fresnel Micro-Structured Mold by Using Non-Integer Rotation Speed Ratio in Parallel Grinding Process
Abstract
Fresnel micro-structured lenses are widely used in the field of modern optoelectronic technology. High-precision Fresnel micro-structured mold is the key technology to achieve its large-scale replication production. Focusing on the surface waviness error of Fresnel micro-structured mold machined by parallel grinding process, this paper conducted theoretical modeling and experiment research. Based on the grinding kinematics theory, the simulation models of the surface waviness topography and the circular waviness profiles of the ground Fresnel micro-structured mold were developed, considering the combined influence of the non-integer rotation speed ratio and other grinding parameters. A series of grinding experiments were carried out to verify the proposed simulation models. The influence of a non-integer rotation speed ratio and a wave-shift value upon the surface waviness error of the ground Fresnel micro-structured molds were analyzed. Both the simulation and experimental results proved that choosing the non-integer rotation speed ratio and a proper wave-shift value could greatly reduce the surface waviness error and improve the surface quality and uniformity.
Keywords