Mathematics (May 2023)

An Evolutionarily Based Type-2 Fuzzy-PID for Multi-Machine Power System Stabilization

  • Ye Wang,
  • Zhaiaibai Ma,
  • Mostafa M. Salah,
  • Ahmed Shaker

DOI
https://doi.org/10.3390/math11112500
Journal volume & issue
Vol. 11, no. 11
p. 2500

Abstract

Read online

In this paper, the impact of one of the challenges of the power transmission system, namely three-phase short-circuits, on the stability of the system is discussed. This fault causes the speed change of the synchronous generators, and the control system needs to quickly zero this speed difference. This paper introduces a completely new and innovative method for power system stabilizer design. In the proposed method, there is a PID controller with a type-2 fuzzy compensator whose optimal parameter values are obtained using an improved virus colony search (VCS) algorithm at any time. In the simulation section, both transient short-circuits (timely operation of breakers and protection relays) and permanent short-circuits (failure of breakers and protection relays) are applied. For transient short-circuits, the three control systems of type-1 fuzzy-PID, type-2 fuzzy-PID, and optimized type-2 fuzzy-PID based on VCS for the nominal load and heavy load modes were compared in the simulations. Apart from the three control systems mentioned earlier, the response of a standalone PID controller was also evaluated in the context of the permanent short-circuit mode. According to the simulation results, the proposed method demonstrates superior performance and high efficiency. In contrast, the standalone PID exhibits divergence.

Keywords