Journal of Materials Research and Technology (Jul 2024)

Tailored eutectic alloy coating for enhanced EMI and X-ray protection by basalt fiber CNT/epoxy composite

  • Vivek Dhand,
  • Cho Hyunsuk,
  • Tufail Hassan,
  • Chong Min Koo,
  • Kyong Yop Rhee

Journal volume & issue
Vol. 31
pp. 689 – 697

Abstract

Read online

In this study, eutectic-Bi–Sn-coated basalt fiber (BF)-reinforced carbon nanotube (CNT)/epoxy hybrid composites were fabricated for dual functionality, i.e., in managing and shielding clinical X-ray radiation and electromagnetic interference (EMI). BF mats were coated with Bi–Sn nanoparticles and subsequently layered with multi-walled CNTs mixed epoxy resin using the vacuum-assisted resin transfer method. High resolution field emission scanning electron microscopy revealed a good dispersion of Bi–Sn nanoparticles over BF and, CNTs within the epoxy matrix. X-ray diffraction analysis confirmed the presence of Bi–Sn, basalt, and CNT phases in the composites. High-resolution Raman spectroscopy revealed characteristic peaks corresponding to the CNTs, epoxy, and Bi–Sn phases. EMI total shielding effectiveness (SET) analysis in the X-band frequency range (8.2–12.4 GHz) demonstrated that the Bi–Sn/BF/CNT/epoxy (S3) exhibits the highest SET value of 30.4 dB, which is attributable to the synergistic effect of the Bi–Sn coating and CNT filler. Analysis of X-ray-radiation leakage revealed that all the composite samples effectively attenuated X-rays with minimal leakage, limited to 6.8 mR. These results indicate the potential of these composites for applications as eco-friendly, non-toxic, and lead-free various industries including healthcare, electronics, aerospace, and defense.

Keywords