Symmetry (Sep 2021)
Calculations of the Thermodynamic Characteristics and Physicochemical Properties of Symmetric and Asymmetric Isomeric Compounds for Identification in Chromatography-Mass Spectrometry
Abstract
A combination of theoretical and experimental approaches was applied to determine the chromatographic rules of isomeric compounds’ behavior for preliminary identification. In gas chromatography-mass spectrometry (GC-MS), identification is performed by spectra matching, however, difficulties arise with isomeric compounds, which cannot be distinguished from each other without additional information. The thermodynamic characteristics of the adsorption of symmetric and asymmetric isomers of chlorophenylphenols, dimethoxybiphenyls, tri- and tetrachlorobiphenyls were determined using molecular statistical calculations. By-products in the chlorination of 4-hydroxybiphenyl were identified: 4-hydroxy-2,3′- and 3,2′-dichlorobiphenyls, 4-hydroxy-3,5,2′- and 2,3,6-trichlorobiphenyls. A developed theoretical approach was applied to predict the retention order of tri- and tetra-chlorobiphenyls. The GC-MS data and molecular statistical calculations made it possible to determine the main products of methoxybenzene dimerization as well as identify impurities. Thermodynamic parameters were received to describe the unusual retention behavior of epimers in reversed-phase high-performance liquid chromatography. Molecular descriptors were calculated to determine correlation with retention of both structural isomers and epimers. Descriptor combining surface area and partial charge information turned out to be useful in evaluating retention order for isomers.
Keywords