Agriculture (Jun 2022)

Modeling the Water and Nitrogen Management Practices in Paddy Fields with HYDRUS-1D

  • Kaiwen Chen,
  • Shuang’en Yu,
  • Tao Ma,
  • Jihui Ding,
  • Pingru He,
  • Yao Li,
  • Yan Dai,
  • Guangquan Zeng

DOI
https://doi.org/10.3390/agriculture12070924
Journal volume & issue
Vol. 12, no. 7
p. 924

Abstract

Read online

Rice production involves abundant water and fertilizer inputs and is prone to nitrogen (N) loss via surface runoff and leaching, resulting in agricultural diffuse pollution. Based on a two-season paddy field experiment in Jiangsu Province, China, field water and N dynamics and their balances were determined with the well-calibrated HYDRUS-1D model. Then, scenarios of different controlled drainage and N fertilizer applications were simulated using the HYDRUS-1D model to analyze the features and factors of N loss from paddy fields. Evapotranspiration and deep percolation were the two dominant losses of total water input over the two seasons, with an average loss of 50.9% and 38.8%, respectively. Additionally, gaseous loss of N from the whole soil column accounted for more than half of total N input on average, i.e., ammonia volatilization (17.5% on average for two seasons) and denitrification (39.7%), while the N uptake by rice accounted for 37.1% on average. The ratio of N loss via surface runoff to total N input exceeded 20% when the N fertilizer rate reached 300 kg ha−1. More and longer rainwater storage in rice fields under controlled drainage reduced surface runoff losses but increased the risk of groundwater contamination by N leaching. Therefore, compared with raising the maximum ponding rainwater depth for controlled drainage, optimizing N fertilizer inputs may be more beneficial for controlling agricultural diffuse pollution by reducing N loss via surface runoff and leaching. The HYDRUS-1D model provides an approach for the quantitative decision-making process of sustainable agricultural water and N management.

Keywords