PLoS Computational Biology (Nov 2020)

Modelling pathogen spread in a healthcare network: Indirect patient movements.

  • Monika J Piotrowska,
  • Konrad Sakowski,
  • André Karch,
  • Hannan Tahir,
  • Johannes Horn,
  • Mirjam E Kretzschmar,
  • Rafael T Mikolajczyk

DOI
https://doi.org/10.1371/journal.pcbi.1008442
Journal volume & issue
Vol. 16, no. 11
p. e1008442

Abstract

Read online

Inter-hospital patient transfers (direct transfers) between healthcare facilities have been shown to contribute to the spread of pathogens in a healthcare network. However, the impact of indirect transfers (patients re-admitted from the community to the same or different hospital) is not well studied. This work aims to study the contribution of indirect transfers to the spread of pathogens in a healthcare network. To address this aim, a hybrid network-deterministic model to simulate the spread of multiresistant pathogens in a healthcare system was developed for the region of Lower Saxony (Germany). The model accounts for both, direct and indirect transfers of patients. Intra-hospital pathogen transmission is governed by a SIS model expressed by a system of ordinary differential equations. Our results show that the proposed model reproduces the basic properties of healthcare-associated pathogen spread. They also show the importance of indirect transfers: restricting the pathogen spread to direct transfers only leads to 4.2% system wide prevalence. However, adding indirect transfers leads to an increase in the overall prevalence by a factor of 4 (18%). In addition, we demonstrated that the final prevalence in the individual healthcare facilities depends on average length of stay in a way described by a non-linear concave function. Moreover, we demonstrate that the network parameters of the model may be derived from administrative admission/discharge records. In particular, they are sufficient to obtain inter-hospital transfer probabilities, and to express the patients' transfers as a Markov process. Using the proposed model, we show that indirect transfers of patients are equally or even more important as direct transfers for the spread of pathogens in a healthcare network.