IEEE Access (Jan 2024)
A Method of Interference Suppression in Integrated OTFS Communication and Sensing Systems
Abstract
The orthogonal time-frequency space (OTFS) modulation is resistant to double selective fading, making it a promising modulation scheme for next-generation integrated sensing and communication (ISAC) systems. Nonetheless, there exists a problem of mutual interference between uplink communication signals and sensing echo signals, which leads to the degradation of both information transmission and sensing performance. For this reason, this paper investigates a successive interference cancellation (SIC) method based on the delay-Doppler (DD) domain to suppress the interference between the sensing signals and communication signals, thereby ensuring the accuracy of communication signal detection and sensing parameter estimation. After receiving the mixed signals at the receiver, these signals are transformed from the time-frequency (TF) domain to the DD domain. Firstly, the sensing echo signal is treated as interference to the communication signal, which is detected using a threshold-based channel estimation method and the Message Passing (MP) algorithm. The communication signal is then reconstructed and subtracted from the mixed signal. At last, the remaining signal is then subjected to parameter estimation with the Maximum Likelihood (ML) algorithm. Simulation results demonstrate that this method allows the ISAC system to operate effectively in both communication and sensing tasks. Compared to the scenario without considering signal interference, the sensing parameter estimation is improved by approximately 6 dB. Additionally, compared to traditional interference suppression methods belonging to TF domain, the performance of sensing parameter estimation is improved by approximately 2 dB.
Keywords