Revista Brasileira de História da Matemática (Nov 2020)

A MATEMÁTICA RECREATIVA DE EULER: NÚMEROS AMIGOS

  • Nelo D. Allan

DOI
https://doi.org/10.47976/RBHM2009v9n1777-88
Journal volume & issue
Vol. 9, no. 17

Abstract

Read online

A teoria de números até o século XVIII era considerada como matemática recreativa. Estudados pelos gregos, os números especiais tinham significados astrológicos, cotidianos ou filosóficos. Nesta categoria estão os números perfeitos, abundantes, amigos, poligonais, fórmulas para primos e primos especiais como os de Mersenne. Estes tópicos também foram tratados por Fermat. Muitos destes problemas apresentam questões que até hoje estão em aberto; foi o que atraiu Euler. Apesar de não resolver a maioria dos problemas envolvidos, o trabalho de Euler teve um impacto profundo nestes tópicos. Aqui ele desenvolve a teoria de congruências e a de funções multiplicativas. O tópico de que vamos tratar é a teoria dos números amigos. Um par de números chama-se amigo se cada um dos números é a soma dos divisores próprios do outro, como, por exemplo, o par {220, 284}, conhecido desde a Antiguidade. Por volta do século IX, Thabit ibn Qurrat apresentou uma fórmula que forneceu mais dois novos pares redescobertos por Fermat e Descartes. O gênio de Euler transformou as três soluções em 60. Hoje sabemos mais de onze milhões de pares. Nosso objetivo é fazer comentários sobre os três trabalhos de Euler neste tópico.

Keywords