Hydrology (Feb 2023)
Characterizing Trace Metal Contamination and Partitioning in the Rivers and Sediments of Western Europe Watersheds
Abstract
Adsorption and desorption processes occurring on suspended and bed sediments were studied in two datasets from western Europe watersheds (Meuse and Mosel). Copper and zinc dissolved and total concentrations, total suspended sediment concentrations, mass concentrations, and grain sizes were analyzed. Four classes of mineral particle size were determined. Grain size distribution had to be considered in order to assess the trace metal particulate phase in the water column. The partitioning coefficients of trace metals between the dissolved and particulate phases were calculated. The objective of this study was to improve the description of the processes involved in the transportation and fate of trace metals in river aquatic ecosystems. Useful data for future modelling, management and contamination assessment of river sediments were provided. As it is confirmed by a literature review, the copper and zinc partitioning coefficients calculated in this study are reliable. The knowledge related to copper and zinc (e.g., partitioning coefficients) will allow us to begin investigations into environmental modelling. This modelling will allow us to consider new sorption processes and better describe trace metal and sediment fates as well as pressure–impact relationships.
Keywords