Communications Materials (Aug 2024)

Correlated electron physics near a site-selective pressure-induced Mott transition in α-LiFe5O8

  • Samar Layek,
  • Eran Greenberg,
  • Davide Levy,
  • Vitali Prakapenka,
  • Siddharth S. Saxena,
  • Gregory Kh. Rozenberg

DOI
https://doi.org/10.1038/s43246-024-00560-x
Journal volume & issue
Vol. 5, no. 1
pp. 1 – 8

Abstract

Read online

Abstract The Mott insulator-to-metal transition (IMT) driven by electron correlations has been among the main research topics in materials science over the past decades. The complex interplay between electronic and lattice degrees of freedom leads to various transition scenarios. Of particular interest may be the case of a transition involving the formation of complex phases comprising regions that differ significantly in their physical properties within the same material. Here, we present the results that advance the understanding of the IMT phenomenon, offering the documentation of a pure site-selective mechanism that is not complicated by any structural and spin transformation. Combining XRD, resistivity, Mössbauer and Raman spectroscopy measurements, we provide evidence for a pure pressure-induced Mott transition in α-LiFe5O8, characterized by site-selective delocalization of electrons, leading to the formation, above ~65 GPa, of a site-selective Mott phase consisting of metallic and insulating sublattices. We note that the electron delocalization in the partially disordered octahedral sublattice cannot be understood purely in terms of a Mott transition, the Anderson-Mott transition picture seems more adequate.