Sensors (Aug 2021)
Ground-Based Hyperspectral Remote Sensing for Estimating Water Stress in Tomato Growth in Sandy Loam and Silty Loam Soils
Abstract
Drought and water scarcity due to global warming, climate change, and social development have been the most death-defying threat to global agriculture production for the optimization of water and food security. Reflectance indices obtained by an Analytical Spectral Device (ASD) Spec 4 hyperspectral spectrometer from tomato growth in two soil texture types exposed to four water stress levels (70–100% FC, 60–70% FC, 50–60% FC, and 40–50% FC) was deployed to schedule irrigation and management of crops’ water stress. The treatments were replicated four times in a randomized complete block design (RCBD) in a 2 × 4 factorial experiment. Water stress treatments were monitored with Time Domain Reflectometer (TDR) every 12 h before and after irrigation to maintain soil water content at the desired (FC%). Soil electrical conductivity (Ec) was measured daily throughout the growth cycle of tomatoes in both soil types. Ec was revealing a strong correlation with water stress at R2 above 0.95 p R2 = 0.9758 and 0.9816 p 570), and normalized PRI (PRInorm). These reflectance indices were strongly correlated with all four water stress indicators and yield. The results revealed that NDVI, RDVI, WI, NDWI, NDWI1640, PRI570, and PRInorm were the most sensitive indices for estimating crop water stress at each growth stage in both sandy loam and silty loam soils at R2 above 0.35. This study recounts the depth of 858 to 1640 nm band absorption to water stress estimation, comparing it to other band depths to give an insight into the usefulness of ground-based hyperspectral reflectance indices for assessing crop water stress at different growth stages in different soil types.
Keywords