Лесной журнал (Jun 2024)

Dendroecological Research into Aspen Growth in the Conditions of the Moscow Region

  • Denis E. Rumyantsev,
  • Nataliya S. Vorob’yeva

DOI
https://doi.org/10.37482/0536-1036-2024-3-46-64
Journal volume & issue
no. 3
pp. 46 – 64

Abstract

Read online

According to V.A. Dragavtsev's concept, the reaction of the annual ring to the provocative environmental background of different years creates a “portrait” of adaptive polygenic genotype systems. By comparing the reactions of the main forest-forming species from an ecologically homogeneous habitat, it is possible to assess the level of similarity of their ecological properties. Cluster analysis of tree-ring chronologies of aspen and species growing together with it, correlation analysis of chronologies and indexed chronologies, as well as time series of meteorological factors and Fourier spectral analysis have been used for a dendroecological research into aspen growth features in the conditions of the Molokchinskiy Botanical and Entomological Reserve of the Sergiev Posad District of the Moscow Region. To compare with the chronologies of aspen from two stands, the chronologies of European white birch, English oak, grey alder and Norway spruce have been used. It has been established that the cluster analysis of indexed chronologies based on calculating the squared Euclidean distance and combining the chronologies into groups according to the rule of complete linkage distinguishes aspen chronologies into a separate cluster, very distant from the other species under consideration. According to the correlation analysis of indexed chronologies, the dynamics of radial increment of aspen is most closely related to the dynamics of radial increment of European white birch and gray alder. Moreover, the maximum correlation coefficient (0.71) is observed for the chronologies of aspen from two different stands. Among the climatic factors, the main limiting influence on aspen increment is exerted by July precipitation in the year of the annual ring formation and August precipitation in the year preceding the year of the annual ring formation. The response to precipitation in August last year is specific to aspen stands and has several options for ecophysiological interpretation. According to Fourier spectral analysis, aspen chronologies have the most pronounced cyclic component with a period of 10.4 years, which completely coincides with the cyclic component of the time series of Wolf numbers in the time interval under consideration. This distinguishes aspen from the rest of the studied forest-forming species. A conclusion has been made about the specificity of the dynamics of the radial growth of aspen in comparison with other forest-forming species under study.

Keywords