The Clinical Respiratory Journal (Aug 2023)

Using random forest machine learning on data from a large, representative cohort of the general population improves clinical spirometry references

  • Kris Kristensen,
  • Pernille H. Olesen,
  • Anna K. Roerbaek,
  • Louise Nielsen,
  • Helle K. Hansen,
  • Simon L. Cichosz,
  • Morten H. Jensen,
  • Ole Hejlesen

DOI
https://doi.org/10.1111/crj.13662
Journal volume & issue
Vol. 17, no. 8
pp. 819 – 828

Abstract

Read online

Abstract Introduction Spirometry is associated with several diagnostic difficulties, and as a result, misdiagnosis of chronic obstructive pulmonary disease (COPD) occurs. This study aims to investigate how random forest (RF) can be used to improve the existing clinical FVC and FEV1 reference values in a large and representative cohort of the general population of the US without known lung disease. Materials and methods FVC, FEV1, body measures, and demographic data from 23 433 people were extracted from NHANES. RF was used to develop different prediction models. The accuracy of RF was compared with the existing Danish clinical references, an improved multiple linear regression (MLR) model, and a model from the literature. Results The correlation between actual and predicted FVC and FEV1 and the 95% confidence interval for RF were found to be FVC = 0.85 (0.85; 0.86) (p < 0.001), FEV1 = 0.92 (0.92; 0.93) (p < 0.001), and existing clinical references were FVC = 0.66 (0.64; 0.68) (p < 0.001) and FEV1 = 0.69 (0.67; 0.70) (p < 0.001). Slope and intercept for the RF models predicting FVC and FEV1 were FVC 1.06 and −238.04 (mL), FEV1: 0.86 and 455.36 (mL), and for the MLR models, slope and intercept were FVC: 0.99 and 38.56 39 (mL), and FEV1: 1.01 and −56.57‐57 (mL). Conclusions The results point toward machine learning models such as RF have the potential to improve the prediction of estimated lung function for individual patients. These predictions are used as reference values and are an important part of assessing spirometry measurements in clinical practice. Further work is necessary in order to reduce the size of the intercepts obtained through these results.

Keywords