Journal of Dental Sciences (Apr 2022)

Novel low-shrinkage-stress bioactive nanocomposite with anti-biofilm and remineralization capabilities to inhibit caries

  • Hanan Filemban,
  • Ghalia Bhadila,
  • Xiaohong Wang,
  • Mary Ann S. Melo,
  • Thomas W. Oates,
  • Michael D. Weir,
  • Jirun Sun,
  • Hockin H.K. Xu

Journal volume & issue
Vol. 17, no. 2
pp. 811 – 821

Abstract

Read online

Background/purpose: A common reason for dental composite restoration failure is recurrent caries at the margins. Our objectives were to: (1) develop a novel low-shrinkage-stress, antibacterial and remineralizing resin composite; (2) evaluate the effects of dimethylaminohexadecyl methacrylate (DMAHDM) on mechanical properties, biofilm inhibition, calcium (Ca) and phosphate (P) ion release, degree of conversion, and shrinkage stress on the new low-shrinkage-stress resin composite for the first time. Material and methods: The resin consisted of urethane dimethacrylate (UDMA) and triethylene glycol divinylbenzyl ether (TEG-DVBE) with high resistance to salivary hydrolytic degradation. Composites were made with 0%–8% of DMAHDM for antibacterial activity, and 20% of nanoparticles of amorphous calcium phosphate (NACP) for remineralization. Mechanical properties and Streptococcus mutans biofilm growth on composites were assessed. Ca and P ion releases, degree of conversion and shrinkage stress were evaluated. Results: Adding 2–5% DMAHDM and 20% NACP into the low-shrinkage-stress composite did not compromise the mechanical properties (p > 0.05). The incorporation of DMAHDM greatly reduced S. mutans biofilm colony-forming units by 2–5 log and lactic acid production by 7 folds, compared to a commercial composite (p < 0.05). Adding 5% DMAHDM did not compromise the Ca and P ion release. The low-shrinkage-stress composite maintained a high degree of conversion of approximately 70%, while reducing the shrinkage stress by 37%, compared to a commercial control (p < 0.05). Conclusion: The bioactive low-shrinkage-stress composite reduced the polymerization shrinkage stress, without compromising other properties. Increasing the DMAHDM content increased the antibacterial effect in a dose-dependent manner.

Keywords