BMC Cancer (May 2010)

Signal transduction mechanisms involved in S100A4-induced activation of the transcription factor NF-κB

  • Mælandsmo Gunhild M,
  • Grotterød Ida,
  • Boye Kjetil

DOI
https://doi.org/10.1186/1471-2407-10-241
Journal volume & issue
Vol. 10, no. 1
p. 241

Abstract

Read online

Abstract Background The metastasis-promoting protein S100A4 activates the transcription factor NF-κB through the classical NF-κB activation pathway. The upstream signal transduction mechanisms leading to increased NF-κB activity are, however, incompletely characterized. Methods The human osteosarcoma cell line II-11b was stimulated with recombinant S100A4 in the presence or absence of inhibitors of common signal transduction pathways, and NF-κB activity was examined using a luciferase-based reporter assay and phosphorylation of IκBα. mRNA expression was analyzed by real-time RT-PCR, protein expression was examined by Western blotting and IKK activity was measured using an in vitro kinase assay. The role of upstream kinases and the cell surface receptor RAGE was investigated by overexpression of dominant negative proteins and by siRNA transfection. Results The Ser/Thr kinase inhibitors H-7 and staurosporine inhibited S100A4-induced IκBα phosphorylation and subsequent NF-κB activation. The protein tyrosine kinase inhibitor genistein and the phospholipase C inhibitor compound 48/80 had a partial inhibitory effect on IκBα phosphorylation, whereas inhibitors of protein kinase C, G-protein coupled receptors and PI 3-kinases had no effect on the level of phosphorylation. Interestingly, S100A4 treatment induced activating phosphorylations of IKKα/β, but neither H-7 nor staurosporine was able to significantly inhibit IKK activation. Dominant negative MEKK1 or NIK did not inhibit S100A4-induced NF-κB activity, and S100A4 stimulation did not influence AKT phosphorylation. Furthermore, diminished expression of the putative S100 protein receptor RAGE did not affect the observed phosphorylation of IκBα. Conclusions S100A4 activates NF-κB by inducing phosphorylation of IKKα/β, leading to increased IκBα phosphorylation. The Ser/Thr kinase inhibitors H-7 and staurosporine attenuated S100A4-induced NF-κB activation and inhibited IKK-mediated phosphorylation of IκBα. S100A4-induced NF-κB activation was independent of the putative S100 protein receptor RAGE and the Ser/Thr kinases MEKK1, NIK and AKT. These findings lead to increased understanding of S100A4 signaling, which may contribute to the identification of novel targets for anti-metastatic therapy.