Communications Medicine (Feb 2024)
Machine learning models identify predictive features of patient mortality across dementia types
Abstract
Abstract Background Dementia care is challenging due to the divergent trajectories in disease progression and outcomes. Predictive models are needed to flag patients at risk of near-term mortality and identify factors contributing to mortality risk across different dementia types. Methods Here, we developed machine-learning models predicting dementia patient mortality at four different survival thresholds using a dataset of 45,275 unique participants and 163,782 visit records from the U.S. National Alzheimer’s Coordinating Center (NACC). We built multi-factorial XGBoost models using a small set of mortality predictors and conducted stratified analyses with dementiatype-specific models. Results Our models achieved an area under the receiver operating characteristic curve (AUC-ROC) of over 0.82 utilizing nine parsimonious features for all 1-, 3-, 5-, and 10-year thresholds. The trained models mainly consisted of dementia-related predictors such as specific neuropsychological tests and were minimally affected by other age-related causes of death, e.g., stroke and cardiovascular conditions. Notably, stratified analyses revealed shared and distinct predictors of mortality across eight dementia types. Unsupervised clustering of mortality predictors grouped vascular dementia with depression and Lewy body dementia with frontotemporal lobar dementia. Conclusions This study demonstrates the feasibility of flagging dementia patients at risk of mortality for personalized clinical management. Parsimonious machine-learning models can be used to predict dementia patient mortality with a limited set of clinical features, and dementiatype-specific models can be applied to heterogeneous dementia patient populations.