Biosensors and Bioelectronics: X (Aug 2024)

Recent advances in wearable electrochemical biosensors towards technological and material aspects

  • Mahan Hosseinzadeh Fakhr,
  • Ivan Lopez Carrasco,
  • Dmitry Belyaev,
  • Jihun Kang,
  • YeHyeon Shin,
  • Jong-Souk Yeo,
  • Won-Gun Koh,
  • Jeongwoo Ham,
  • Alexander Michaelis,
  • Joerg Opitz,
  • Natalia Beshchasna

Journal volume & issue
Vol. 19
p. 100503

Abstract

Read online

The next generation of wearable biosensors comes with the latest advancements in biosensor technology. Soft and stretchable electrode materials like hydrogels with the similar functionalities of human tissue including stretchability, self-healability, and responsiveness to different stimuli have emerged as the most versatile materials in wearable electronics. The incorporation of conductive nanofillers is found to enhance the sensitivity of the electrochemical biosensors significantly. Microfluidic technology has reduced the volume of samples and reagents required for the analysis, allowing continuous biomedical monitoring from a drop of biofluid. In this paper, the most advanced progress in electrochemical wearable platforms that can noninvasively and continuously monitor the biochemical markers in body fluids for the diagnosis and health management is reviewed. Innovation in microelectronics, modification, fabrication technologies, and detection methods are the main focus of the discussion. In particular, hydrogel-based sensors and microfluidic systems as the latest technology trends in wearable detection are discussed in detail. Integration of miniaturized electrochemical wearable biosensors with wireless technology as a great promise for real-time healthcare monitoring and point-of-care (POC) diagnostics is also summarized. Finally, we outline the most advanced wearable biosensors with optimized material and design as well as key challenges that need to be addressed to improve sensing performance (accuracy, sensitivity, selectivity, stability), portability (miniaturized size and light weight), and flexibility of the wearable biosensors.

Keywords