International Journal of Molecular Sciences (Aug 2017)

Do Multiwell Plate High Throughput Assays Measure Loss of Cell Viability Following Exposure to Genotoxic Agents?

  • Razmik Mirzayans,
  • Bonnie Andrais,
  • David Murray

DOI
https://doi.org/10.3390/ijms18081679
Journal volume & issue
Vol. 18, no. 8
p. 1679

Abstract

Read online

Cell-based assays in multiwell plates are widely used for radiosensitivity and chemosensitivity assessment with different mammalian cell types. Despite their relative ease of performance, such assays lack specificity as they do not distinguish between the cytostatic (reversible/sustained growth arrest) and cytotoxic (loss of viability) effects of genotoxic agents. We recently reported studies with solid tumor-derived cell lines demonstrating that radiosensitivity as measured by multiwell plate colorimetric (e.g., XTT) and fluorimetric (e.g., CellTiter-Blue) assays reflects growth arrest but not loss of viability. Herein we report similar observations with cancer cell lines expressing wild-type p53 (A549 lung carcinoma) or mutant p53 (MDA–MB-231 breast carcinoma) after treatment with the chemotherapeutic drug cisplatin. Importantly, we show that treatment of cancer cells with concentrations of cisplatin that result in 50% effect (i.e., IC50) in multiwell plate assays trigger the emergence of growth arrested cells that exhibit highly enlarged morphology, remain viable and adherent to the culture dish, and metabolize the tetrazolium salt 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) to its formazan derivative. The emergence of markedly enlarged viable cells complicates the interpretation of chemosensitivity data obtained with multiwell plate high throughput assays. Relying solely on IC50 values could be misleading.

Keywords