Applied Sciences (Oct 2022)

Rapid Identification of Foodborne Pathogens in Limited Resources Settings Using a Handheld Raman Spectroscopy Device

  • Cid Ramon Gonzalez-Gonzalez,
  • Mark Hansen,
  • Alexandros Ch. Stratakos

DOI
https://doi.org/10.3390/app12199909
Journal volume & issue
Vol. 12, no. 19
p. 9909

Abstract

Read online

Rapid and precise methods to detect pathogens are paramount in ensuring food safety and selecting appropriate disinfection treatments. Raman spectrometry is a promising technology being investigated for detecting pathogens and achieving rapid, culture-free, and label-free methods. Nonetheless, previous Raman techniques require additional steps, including the preparation of slides that could introduce significant variability. In this study, we investigated the capability of a Raman handheld device for rapid identification of monocultures of Listeria monocytogenes, Salmonella Typhimurium, Escherichia coli O157:H7, and Staphylococcus aureus, and the combination of co-cultures in BHI broth suspension by utilising principal component analysis (PCA) and support vector machine (SVM) classification of Raman spectra. The detection method accurately identified monocultures (0.93 ± 0.20), achieving good discrimination after 24 h of bacterial growth. However, the PCA–SVM system was less accurate for classifying co-cultures (0.67 ± 0.35). These results show that this method requires an isolation step followed by biomass enrichment (>8 log10 CFU/mL) for accurate identification. The advantage of this technology is its simplicity and low-cost preparation, achieving high accuracy in monocultures in a shorter time than conventional culture-dependent methods.

Keywords