Viruses (Jul 2024)

Endogenous Bornavirus-like Elements in Bats: Evolutionary Insights from the Conserved Riboviral L-Gene in Microbats and Its Antisense Transcription in <i>Myotis daubentonii</i>

  • Muriel Ritsch,
  • Tom Eulenfeld,
  • Kevin Lamkiewicz,
  • Andreas Schoen,
  • Friedemann Weber,
  • Martin Hölzer,
  • Manja Marz

DOI
https://doi.org/10.3390/v16081210
Journal volume & issue
Vol. 16, no. 8
p. 1210

Abstract

Read online

Bats are ecologically diverse vertebrates characterized by their ability to host a wide range of viruses without apparent illness and the presence of numerous endogenous viral elements (EVEs). EVEs are well preserved, expressed, and may affect host biology and immunity, but their role in bat immune system evolution remains unclear. Among EVEs, endogenous bornavirus-like elements (EBLs) are bornavirus sequences integrated into animal genomes. Here, we identified a novel EBL in the microbat Myotis daubentonii, EBLL-Cultervirus.10-MyoDau (short name is CV.10-MyoDau) that shows protein-level conservation with the L-protein of a Cultervirus (Wuhan sharpbelly bornavirus). Surprisingly, we discovered a transcript on the antisense strand comprising three exons, which we named AMCR-MyoDau. The active transcription in Myotis daubentonii tissues of AMCR-MyoDau, confirmed by RNA-Seq analysis and RT-PCR, highlights its potential role during viral infections. Using comparative genomics comprising 63 bat genomes, we demonstrate nucleotide-level conservation of CV.10-MyoDau and AMCR-MyoDau across various bat species and its detection in 22 Yangochiropera and 12 Yinpterochiroptera species. To the best of our knowledge, this marks the first occurrence of a conserved EVE shared among diverse bat species, which is accompanied by a conserved antisense transcript. This highlights the need for future research to explore the role of EVEs in shaping the evolution of bat immunity.

Keywords