Buildings (Oct 2024)

Reliability Analysis of Axial Compressive Strength of Concrete-Filled Steel Tube (CFST) under Coupled Corrosion and Load Effects

  • Dan-Yang Ma,
  • Shuai Ma,
  • Li-Yan Xu

DOI
https://doi.org/10.3390/buildings14103205
Journal volume & issue
Vol. 14, no. 10
p. 3205

Abstract

Read online

This paper presents a finite element analysis (FEA) of and reliability study on concrete-filled steel tube (CFST) members under the combined effects of corrosion and compressive loading. First, a stochastic-based FE model is established through the proposed secondary development program based on ABAQUS 2021 software. The model could account for the uncertainties of material, geometric, and corrosion effect on CFST members. The reliability of the built model was validated through experimental data of corroded CFST members under compression loading. Subsequently, the compressive performance of CFST under a combination of corrosion and loading was further investigated by numerical parameter analysis. A total of 1800 models were created to clarify the coupling mechanism among the core concrete strength, the steel tube strength, the steel ratio, and the maximum strength of the CFST member. Three theoretical formulas presented in classical design standards were used to calculate the axial compressive strength of the corroded CFST, and the uncertainty parameters μkp and δkp were also obtained for the discussed design formulas. Finally, the First Order and Second Moment (FOSM) method was employed to estimate the reliability indices β across different standards. The calculations revealed that the reliability indices β according to European standard ranges from 2.93 to 5.52, with some results falling below the target reliability index βT of 3.65. In addition, the multi-parameter coupling effects on reliability index β were investigated, and the main influencing factors were obtained. By leveraging the reliability analysis, reasonable design requirements can be proposed for CFST members under the coupling effects of corrosion and external load, which provides a design basis for the CFST member.

Keywords