Foods (Oct 2023)

The Gelatin-Coated Nanostructured Lipid Carrier (NLC) Containing <i>Salvia officinalis</i> Extract: Optimization by Combined D-Optimal Design and Its Application to Improve the Quality Parameters of Beef Burger

  • Maedeh Malekmohammadi,
  • Babak Ghanbarzadeh,
  • Shahram Hanifian,
  • Hossein Samadi Kafil,
  • Mehdi Gharekhani,
  • Pasquale M. Falcone

DOI
https://doi.org/10.3390/foods12203737
Journal volume & issue
Vol. 12, no. 20
p. 3737

Abstract

Read online

The current study aims to synthesize the gelatin-coated nanostructured lipid carrier (NLC) to encapsulate sage extract and use this nanoparticle to increase the quality parameters of beef burger samples. NLCs were prepared by formulation of gelatin (as surfactant and coating biopolymer), tallow oil (as solid lipid), rosemary essential oil (as liquid lipid), sage extract (as active material or encapsulant), polyglycerol ester and Tween 80 (as low-molecular emulsifier) through the high-shear homogenization–sonication method. The effects of gelatin concentrations and the solid/liquid ratio on the particle size, polydispersity index (PDI), and encapsulation efficiency (EE%) of sage extract-loaded NLCs were quantitatively investigated and optimized using a combined D-optimal design. Design expert software suggested the optimum formulation with a gelatin concentration of 0.1 g/g suspension and solid/liquid lipid ratio of 60/40 with a particle size of 100.4 nm, PDI of 0.36, and EE% 80%. The morphology, interactions, thermal properties, and crystallinity of obtained NLC formulations were investigated by TEM, FTIR, DSC, and XRD techniques. The optimum sage extract-loaded/gelatin-coated NLC showed significantly higher antioxidant activity than free extract after 30 days of storage. It also indicated a higher inhibitory effect against E. coli and P. aeruginosa than free form in MIC and MBC tests. The optimum sage extract-loaded/gelatin-coated NLC, more than free extract, increased the oxidation stability of the treated beef burger samples during 90 days of storage at 4 and −18 °C (verified by thiobarbituric acid and peroxide values tests). Incorporation of the optimum NLC to beef burgers also effectively decreased total counts of mesophilic bacteria, psychotropic bacteria, S. aureus, coliform, E. coli, molds, and yeasts of treated beef burger samples during 0, 3, and 7 days of storage in comparison to the control sample. These results suggested that the obtained sage extract-loaded NLC can be an effective preservative to extend the shelf life of beef burgers.

Keywords