Energy Reports (Apr 2022)
Hybrid renewable energy systems based on micro-cogeneration
Abstract
Hybrid renewable energy systems (HRES) are seeing as a solution to overcome the fluctuation and randomness of certain renewable energy sources, such as solar and wind power. Coupling the fluctuating renewable energy sources with the controllable sources, such as biomass-fueled micro-cogeneration, constitute an HRES that significantly reduces CO2 emissions and primary energy consumption. The purpose of this work is to review research works on hybrid renewable energy systems based on micro-cogeneration and to present a case study of optimizing a solar-based micro-cogeneration system. First, renewable energy-fueled micro-cogeneration systems are presented according to the prime mover technology: Stirling engine, organic Rankine cycle and photovoltaic-thermal (PVT). The different prime movers are assessed according to their advantages, disadvantages and market availability. Next, several research works on hybrid renewable energy systems including solar and micro-cogeneration technologies are summarized and key findings are highlighted. Finally, the results of the case study are presented for reasoning the necessity of system hybridization. The results indicated that more experimental data on HRES and research effort on energy management strategies and stochastic optimization models are required. The results of the case study showed maximum thermal and electrical reliability of 68% and 70%, respectively. The optimized PVT/battery/thermal storage system was not able to cover all energy demand of the case study but supporting heat and electricity sources are required.