Atmosphere (Jan 2024)

Levels of Dry Deposition Submicron Black Carbon on Plant Leaves and the Associated Oxidative Potential

  • Ying Xu,
  • Qingyang Liu

DOI
https://doi.org/10.3390/atmos15010127
Journal volume & issue
Vol. 15, no. 1
p. 127

Abstract

Read online

There is a need for monitoring air pollution associated with black carbon (BC) using a passive monitor is required in remote areas where the measurements are absent. In this pilot study, we developed a quantitative method to determine dry deposition submicron BC using dual-wavelength ultraviolet–visible spectroscopy. Furthermore, we measured the levels of dry deposition BC on plant leaves from 30 plant species located in urban Nanjing using the established method. The oxidative potential of BC on plant leaves as passive bio-monitoring samplers was assessed. The concentrations of black carbon (BC) on tree leaves varied from 0.01 to 1.6 mg m−2. Significant differences in levels of BC across leaves from different tree types were observed. The values of oxidative potential in deposited particles of leaf samples were observed to be in the range of 33–46 nmol min−1 mg−1 using the dithiothreitol (DTT) assay and 18–32 nmol min−1 mg−1 using the ascorbic acid (AA) assay, respectively. In comparison, the oxidative potential of BC-dominated mass in water extracts of leaf samples was in the range of 5–35 nmol min−1 mg−1 measured using the DTT assay and 2 to 12 nmol min−1 mg−1 using the AA assay, respectively. We found variations in the levels of OP across the leaves of different tree types were not large, while the levels of OP in terms of BC-dominated mass varied greatly. These results indicate that the established method with dual-wavelength ultraviolet–visible spectroscopy could provide a simple tool to determine submicron BC in plant leaves of the passive monitor.

Keywords