Journal of Neuroinflammation (Jul 2021)
The potential roles of m6A modification in regulating the inflammatory response in microglia
Abstract
Abstract Background Microglia are key regulators of the inflammatory response in the brain. Adenosine in RNAs can be converted to m6A (N6-methyladenosine), which regulates RNA metabolism and functions as a key epitranscriptomic modification. The m6A modification pattern and m6A-related signatures under pro-inflammatory and anti-inflammatory conditions of microglia remain unclear. Methods Primary rat microglia were differentiated into pro-inflammatory M1-like (M1-L), anti-inflammatory M2-like (M2-L), and resting, unstimulated (M0-L) phenotypes. m6A mRNA and lncRNA epitranscriptomic microarray analyses were performed, and pathway analysis was conducted to understand the functional implications of m6A methylation in mRNAs and lncRNAs. The m6A methylation level and gene expression of mRNAs and lncRNAs were subsequently verified by m6A Me-RIP and qRT-PCR. Results A total of 1588 mRNAs and 340 lncRNAs, 315 mRNAs and 38 lncRNAs, and 521 mRNAs and 244 lncRNAs were differentially m6A methylated between M1-L and M0-L (M1-L/M0-L), M2-L and M0-L (M2-L/M0-L), M2-L and M1-L (M2-L/M1-L), respectively. Furthermore, 4902 mRNAs, 4676 mRNAs, and 5095 mRNAs were identified distinctively expressed in M1-L/M0-L, M2-L/M0-L, and M2-L/M1-L, respectively. Pathway analysis of differentially m6A methylated mRNAs and lncRNAs in M1-L/M0-L identified immune system, signal transduction, and protein degradation processes. In contrast, the distinct m6A methylated mRNAs in M2-L/M0-L were involved in genetic information processing, metabolism, cellular processes, and neurodegenerative disease-related pathways. We validated m6A methylation and the expression levels of five mRNAs and five lncRNAs, which were involved in upregulated pathways in M1-L/M0-L, and five mRNAs involved in upregulated pathways in M2-L/M0-L. Conclusions These findings identify a distinct m6A epitranscriptome in microglia, and which may serve as novel and useful regulator during pro-inflammatory and anti-inflammatory response of microglia.
Keywords