Nuclear Fusion (Jan 2024)

Overview of recent results from the ST40 compact high-field spherical tokamak

  • S.A.M. McNamara,
  • A. Alieva,
  • M.S. Anastopoulos Tzanis,
  • O. Asunta,
  • J. Bland,
  • H. Bohlin,
  • P.F. Buxton,
  • C. Colgan,
  • A. Dnestrovskii,
  • E. du Toit,
  • M. Fontana,
  • M. Gemmell,
  • M.P. Gryaznevich,
  • J. Hakosalo,
  • M.R. Hardman,
  • D. Harryman,
  • D. Hoffman,
  • M. Iliasova,
  • S. Janhunen,
  • F. Janky,
  • J.B. Lister,
  • H.F. Lowe,
  • E. Maartensson,
  • C. Marsden,
  • S.Y. Medvedev,
  • S.R. Mirfayzi,
  • M. Moscheni,
  • G. Naylor,
  • V. Nemytov,
  • J. Njau,
  • T. O’Gorman,
  • D. Osin,
  • T. Pyragius,
  • A. Rengle,
  • M. Romanelli,
  • C. Romero,
  • M. Sertoli,
  • V. Shevchenko,
  • J. Sinha,
  • A. Sladkomedova,
  • S. Sridhar,
  • J. Stirling,
  • Y. Takase,
  • P.R. Thomas,
  • J. Varje,
  • E. Vekshina,
  • B. Vincent,
  • H.V. Willett,
  • J. Wood,
  • E. Wooldridge,
  • D. Zakhar,
  • X. Zhang,
  • D. Battaglia,
  • N. Bertelli,
  • P.J. Bonofiglo,
  • L.F. Delgado-Aparicio,
  • V.N. Duarte,
  • N.N. Gorelenkov,
  • M. de Haas,
  • S.M. Kaye,
  • R. Maingi,
  • D. Mueller,
  • M. Ono,
  • M. Podesta,
  • Y. Ren,
  • S. Trieu,
  • E. Delabie,
  • T.K. Gray,
  • B. Lomanowski,
  • E.A. Unterberg,
  • O. Marchuk,
  • the ST40 Team

DOI
https://doi.org/10.1088/1741-4326/ad6ba7
Journal volume & issue
Vol. 64, no. 11
p. 112020

Abstract

Read online

ST40 is a compact, high-field ( $B_{\mathrm{T0}}\unicode{x2A7D} 2.1\,\,\,\textrm{T}$ ) spherical tokamak (ST) with a mission to expand the physics and technology basis for the ST route to commercial fusion. The ST40 research programme covers confinement and stability; solenoid-free start-up; high-performance operating scenarios; and plasma exhaust. In 2022, ST40 obtained central deuterium ion temperatures of $9.6 \pm 0.4\ \textrm{keV}$ , demonstrating for the first time that pilot plant relevant ion temperatures can be reached in a compact, high-field ST. Analysis of these high-ion temperature plasmas is presented, including a summary of confinement, transport and microstability characteristics, and energetic particle instabilities. Recent scenario development activities have focused on establishing diverted H-mode plasmas across a range of toroidal fields and plasma currents, along with scenarios with high non-inductive current fractions. In future operations, beginning in 2025, a 1 MW dual frequency (104/137 GHz) electron cyclotron (EC) system will be installed to enable the study of EC and electron Bernstein wave plasma start-up and current drive. Predictive modelling of the potential performance of these systems is presented.

Keywords