E3S Web of Conferences (Jan 2021)
Fibrous nano composite reinforced surface on WC-Co cemented carbide achieved by pulsed electron beam irradiation and subsequent tempering
Abstract
Exotic microstructures can be tailored by extreme conditions with combined material processing techniques for desirable properties. In this work, an innovative 2-staged process was explored for WC-10Co cemented carbide surface modification. Firstly, rapid thermal cycles were induced by high current pulsed electron beam (HCPEB) irradiation at energy density of 6 J/cm2, during which the micro-WC/Co was melted and re-solidified into a nano-scaled equiaxed grain microstructure with metastable fcc-WC1-x as the majority phase in the surface layer (~2 μm). Thereafter, a subsequent tempering process was applied to the HCPEB-irradiated cemented carbide specimens and the nano equiaxed grains in the surface layer were gradually transferred into nano-scaled fibrous microstructure. Phase transformation was investigated using thermo-gravimetric analysis differential scanning calorimetry (TGA-DSC), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and X-ray diffractometry (XRD). Analysis showed that the fibrous nano structure resulted from the decomposition of WC1-x at 600-700 ºC via fcc-WC1-x → hex-WC + hcp-W2C. After the 2-staged process, the surface microhardness was greatly improved.
Keywords