Applied Sciences (Oct 2022)

Deep Anomaly Detection for In-Vehicle Monitoring—An Application-Oriented Review

  • Francisco Caetano,
  • Pedro Carvalho,
  • Jaime Cardoso

DOI
https://doi.org/10.3390/app121910011
Journal volume & issue
Vol. 12, no. 19
p. 10011

Abstract

Read online

Anomaly detection has been an active research area for decades, with high application potential. Recent work has explored deep learning approaches to the detection of abnormal behaviour and abandoned objects in outdoor video surveillance scenarios. The extension of this recent work to in-vehicle monitoring using solely visual data represents a relevant research opportunity that has been overlooked in the accessible literature. With the increasing importance of public and shared transportation for urban mobility, it becomes imperative to provide autonomous intelligent systems capable of detecting abnormal behaviour that threatens passenger safety. To investigate the applicability of current works to this scenario, a recapitulation of relevant state-of-the-art techniques and resources is presented, including available datasets for their training and benchmarking. The lack of public datasets dedicated to in-vehicle monitoring is addressed alongside other issues not considered in previous works, such as moving backgrounds and frequent illumination changes. Despite its relevance, similar surveys and reviews have disregarded this scenario and its specificities. This work initiates an important discussion on application-oriented issues, proposing solutions to be followed in future works, particularly synthetic data augmentation to achieve representative instances with the low amount of available sequences.

Keywords