Journal of Clinical and Translational Science (Apr 2024)

420 Computable Phenotyping with “Big Data” as a Foundation for Artificial Intelligence Algorithm Construction: Puberty as a Transdisciplinary Case Example

  • David (DJ) Schnabel,
  • Lorah D. Dorn

DOI
https://doi.org/10.1017/cts.2024.364
Journal volume & issue
Vol. 8
pp. 125 – 125

Abstract

Read online

OBJECTIVES/GOALS: Artificial intelligence (AI) depends on quality machine learning (ML) algorithms constructed with high-quality training data. This TL1 trainee project develops a disease-agnostic computable phenotype framework for ML algorithm construction, modeling male puberty as a case example. METHODS/STUDY POPULATION: A computable phenotype of male puberty was constructed to answer the question: “Does early pubertal timing increase the risk of developing type II diabetes (T2D) in males?” A computable phenotype of males 85th percentile. Males diagnosed with precocious puberty (E30.1) were 6.89 times more likely to develop T2D when aged 14-18 years old than those without (OR 6.89, 95% CI: 5.17-9.19, p<0.0001). Next steps involve training a ML model on each computable phenotype groupings’ health data, with anticipated results identifying underlying salient pathophysiologic variables. A generalized computable phenotype approach is further developed to: 1) explore clinical questions in large databases like TriNetX©, and 2) model disease development with AI/ML algorithm construction. DISCUSSION/SIGNIFICANCE: Computed phenotypes reveal males with precocious puberty may have increased T2D risk. Next steps utilize subject data to train an AI/ML algorithm, model development to identify salient pathophysiologic variables, and synthesize a generalized AI/ML developmental research framework for dissemination.