Journal of Magnesium and Alloys (May 2024)

Magnesium oxide (MgO) nanoadsorbents in wastewater treatment: A comprehensive review

  • H.C.S. Perera,
  • V. Gurunanthanan,
  • Anoop Singh,
  • M.M.M.G.P.G. Mantilaka,
  • G. Das,
  • Sandeep Arya

Journal volume & issue
Vol. 12, no. 5
pp. 1709 – 1773

Abstract

Read online

Wastewater contamination by heavy metals and synthetic dyes presents a significant environmental challenge, necessitating effective and sustainable separation techniques. This review article provides a detailed examination of magnesium oxide (MgO) nanoparticles as an innovative nanoadsorbent for wastewater treatment, with a specific focus on heavy metal and dye removal. The review comprehensively explores various aspects of MgO nanoparticles, including their structural characteristics and synthesis techniques. The article delves into the morphology and crystallographic arrangement of MgO nanoparticles, offering insights into their structural attributes. Given the complexity of adsorption processes, the review identifies and analyzes parameters influencing the adsorption efficiency of MgO nanoparticles, such as temperature, pH, contact time, initial concentration, and co-existing ions. The interplay between these parameters and the adsorption capability of MgO nanoparticles emphasizes the importance of optimizing operational conditions. Furthermore, the review assesses various synthesis methods for MgO nanoparticles, including sol-gel, hydrothermal, precipitation, green synthesis, solvothermal, and template-assisted techniques. It discusses the advantages, limitations, and resulting nanoparticle characteristics of each method, enabling readers to grasp the implications of synthesis processes on adsorption efficiency. This comprehensive review consolidates current insights into the effectiveness of MgO nanoparticles as a potent nanoadsorbent for removing heavy metals and dyes from wastewater covering a wide spectrum of aspects related to MgO nanoparticles. Moreover, there is a need to investigate the use of MgO in the treatment of actual wastewater or river water, in order to leverage its cost-effectiveness and high efficiency for practical water treatment applications in real-time.

Keywords