Nanomaterials (Jan 2019)

Improved Dispersion of Bacterial Cellulose Fibers for the Reinforcement of Paper Made from Recycled Fibers

  • Zhouyang Xiang,
  • Jie Zhang,
  • Qingguo Liu,
  • Yong Chen,
  • Jun Li,
  • Fachuang Lu

DOI
https://doi.org/10.3390/nano9010058
Journal volume & issue
Vol. 9, no. 1
p. 58

Abstract

Read online

Bacterial cellulose (BC) can be used to improve the physical properties of paper. However, previous studies have showed that the effectiveness of this improvement is impaired by the agglomeration of the disintegrated BC fibers. Effective dispersion of BC fibers is important to their reinforcing effects to paper products, especially those made of recycled fibers. In this study, carboxymethyl cellulose, xylan, glucomannan, cationized starch, and polyethylene oxide were used to improve the dispersion of BC fibers. With dispersed BC fibers, the paper made of recycled fiber showed improved dry tensile strength. The best improvement in dry tensile index was 4.2 N·m/g or 12.7% up, which was obtained by adding BC fibers dispersed with glucomannan. Glucomannan had the highest adsorption onto BC fibers, i.e., 750 mg/g at 1000 mg/L concentration, leading to the best colloidal stability of BC fiber suspension that had no aggregation in 50 min at 0.1 weight ratio of glucomannan to BC. TEMPO-mediated oxidation of BC was effective in improving its colloidal stability, but not effective in improving the ability of BC fiber to enhance paper dry tensile index while the wet tensile index was improved from 0.89 N·m/g to 1.59 N·m/g, i.e., ~80% improvement.

Keywords