Journal of Global Antimicrobial Resistance (Sep 2024)

Evaluation of the activity of cefepime/enmetazobactam against Enterobacterales bacteria collected in Europe from 2019 to 2021, including third-generation cephalosporin-resistant isolates

  • Ian Morrissey,
  • Stephen Hawser,
  • Nimmi Kothari,
  • Nathalie Dunkel,
  • Juan Quevedo,
  • Adam Belley,
  • Anne Santerre Henriksen,
  • Marie Attwood

Journal volume & issue
Vol. 38
pp. 71 – 82

Abstract

Read online

ABSTRACT: Objectives: This study was performed to investigate the activity of the novel ß-lactam/ß-lactamase inhibitor combination cefepime/enmetazobactam, against recently circulating Enterobacterales isolates from Europe from 2019 to 2021. Methods: A total of 2627 isolates were collected, and antimicrobial susceptibility was determined according to the European Committee on Antimicrobial Susceptibility Testing guidelines. Isolates with phenotypic resistance to ceftriaxone and ceftazidime (but susceptible to meropenem) and isolates nonsusceptible to meropenem were screened for the presence of ß-lactamases. Results: Overall, susceptibility to third-generation cephalosporins was 77%, and 97.3% were susceptible to meropenem. Cefepime/enmetazobactam susceptibility was 97.9% (72% of these isolates were Klebsiella pneumoniae from Italy), compared with 80.0% susceptibility to piperacillin/tazobactam and 99.4% to ceftazidime/avibactam. A total of 320 isolates (12.2%) were resistant to third-generation cephalosporins but susceptible to meropenem, and virtually all (96.3%) carried an extended-spectrum ß-lactamase with or without an AmpC and these were all susceptible to cefepime/enmetazobactam. Most meropenem-nonsusceptible isolates carried a KPC (68%), which were not inhibited by cefepime/enmetazobactam but were inhibited by ceftazidime/avibactam. Additionally, most meropenem-nonsusceptible isolates carrying OXA-48 (9/12 isolates) were susceptible to cefepime/enmetazobactam. Conclusions: Cefepime/enmetazobactam was highly active against Enterobacterales isolates, especially those resistant to third-generation cephalosporins. These data suggest that cefepime/enmetazobactam could be used as a carbapenem-sparing agent to replace piperacillin/tazobactam.

Keywords