Indian Journal of Endocrinology and Metabolism (Jan 2019)

Effect of vitamin D supplementation on bone turnover markers in children and adolescents from North India

  • Raman K Marwaha,
  • M K Garg,
  • A Mithal,
  • Sushil Gupta,
  • Manoj Shukla,
  • Aditi Chadha

DOI
https://doi.org/10.4103/ijem.IJEM_149_18
Journal volume & issue
Vol. 23, no. 1
pp. 27 – 34

Abstract

Read online

Objectives: Vitamin D is known to play an important role in bone mineral metabolism. Its deficiency may affect growth and status of bone markers in children. Hence, we undertook to study the status of bone markers in children with vitamin D deficiency (VDD) and impact of vitamin D3 supplementation on them. Materials and Methods: Total 468 out of 615 children and adolescents with VDD, who were given either of the three doses (600, 1000, and 2000) of vitamin D supplementation, were included in the study. These 468 children with pre- and postsupplementation preserved samples with available anthropometry, serum biochemistry, 25-hydroxy-vitamin D, and parathormone were evaluated for bone formation (procollagen type 1 amino-terminal propeptide [P1NP]) and resorption (β-cross laps [CTx]) markers. Results: The mean age and body mass index of these children were 11.3 ± 2.3 years (boys: 11.5 ± 2.4; girls: 12.2 ± 1.2 years; P = 0.03) and 18.1 ± 3.8 kg/m2 (boys: 18.2 ± 3.9; girls: 17.6 ± 3.2 kg/m2; P = 0.208), respectively. There were 8.8% subjects with severe, 42.7% with moderate, and 48.5% with mild VDD. There was a significant decline in serum P1NP (from 691 ± 233 ng/ml to 640 ± 259 ng/ml, P < 0.001) and CTx (from 1.67 ± 0.53 ng/ml to 1.39 ± 0.51 ng/ml, P < 0.001) following supplementation. Though decline in serum P1NP and CTx levels was observed in both boys and girls, among all three supplementation groups and VDD categories, the effect was more marked in serum CTx than P1NP levels. Conclusions: Vitamin D supplementation in VDD children resulted in decrease in both bone formation (P1NP) and resorption (CTx). The impact, however, was more marked on bone resorption than bone formation.

Keywords