PLoS ONE (Jan 2013)

Phospholipid metabolites in recurrent glioblastoma: in vivo markers detect different tumor phenotypes before and under antiangiogenic therapy.

  • Elke Hattingen,
  • Oliver Bähr,
  • Johannes Rieger,
  • Stella Blasel,
  • Joachim Steinbach,
  • Ulrich Pilatus

DOI
https://doi.org/10.1371/journal.pone.0056439
Journal volume & issue
Vol. 8, no. 3
p. e56439

Abstract

Read online

PurposeMetabolic changes upon antiangiogenic therapy of recurrent glioblastomas (rGBMs) may provide new biomarkers for treatment efficacy. Since in vitro models showed that phospholipid membrane metabolism provides specific information on tumor growth we employed in-vivo MR-spectroscopic imaging (MRSI) of human rGBMs before and under bevacizumab (BVZ) to measure concentrations of phosphocholine (PCho), phosphoethanolamine (PEth), glycerophosphocholine (GPC), and glyceroethanolamine (GPE).Methods(1)H and (31)P MRSI was prospectively performed in 32 patients with rGBMs before and under BVZ therapy at 8 weeks intervals until tumor progression. Patients were dichotomized into subjects with long overall survival (OS) (>median OS) and short OS (ResultsBefore BVZ, (1)H-detectable choline signals (total GPC and PCho) in rGBMs were elevated but significance failed after dichotomizing. For metabolite ratios obtained by (31)P MRSI, the short-OS group showed higher PCho/GPC (p = 0.004) in rGBMs compared to control tissue before BVZ while PEth/GPE was elevated in rGBMs of both groups (long-OS p = 0.04; short-OS p = 0.003). Under BVZ, PCho/GPC and PEth/GPE in the tumor initially decreased (p = 0.04) but only PCho/GPC re-increased upon tumor progression (p = 0.02). Intriguingly, in normal-appearing tissue an initial PEth/GPE decrease (p = 0.047) was followed by an increase at the time of tumor progression (p = 0.031).ConclusionAn elevated PCho/GPC ratio in the short-OS group suggests that it is a negative predictive marker for BVZ efficacy. These gliomas may represent a malignant phenotype even growing under anti-VEGF treatment. Elevated PEth/GPE may represent an in-vivo biomarker more sensitive to GBM infiltration than MRI.