Land (Mar 2024)

Spatial and Temporal Changes in Soil Freeze-Thaw State and Freezing Depth of Northeast China and Their Driving Factors

  • Jiangtao Yu,
  • Hangnan Yu,
  • Lan Li,
  • Weihong Zhu

DOI
https://doi.org/10.3390/land13030368
Journal volume & issue
Vol. 13, no. 3
p. 368

Abstract

Read online

It is necessary to further investigate the spatial considerations, temporal characteristics, and drivers of change affecting the beginning and end of soil freezing and thawing, including the maximum depth of the seasonal freezing (MDSF) and the active layer thickness (ALT) in Northeast China. Hourly soil temperature, among other data, from 1983–2022 were investigated, showing a delay of about 6 days in freezing. In contrast, thawing and complete thawing advanced by about 26 and 20 d, respectively. The freezing period and total freeze-thaw days decreased by about 29 and 23 days, respectively. The number of complete thawing period days increased by about 22 days, while the MDSF decreased by about 25 cm. The ALT increased by about 22 cm. Land Surface Temperature (LST) is the main factor influencing the beginning and end of soil freezing and thawing, MDSF and ALT changes in Northeast China; air temperature, surface net solar radiation, and volumetric soil water content followed. The influence of the interacting factors was greater than the single factors, and the interactive explanatory power of the LST and surface net solar radiation was highest when the soil started to freeze (0.858). The effect of the LST and the air temperature was highest when the soil was completely thawed (0.795). LST and the volumetric soil water content interacted to have the first explanatory power for MDSF (0.866) and ALT (0.85). The results of this study can provide scientific reference for fields such as permafrost degradation, cold zone ecological environments, and agricultural production in Northeast China.

Keywords