Sensors (Mar 2021)

Building a Twitter Sentiment Analysis System with Recurrent Neural Networks

  • Sergiu Cosmin Nistor,
  • Mircea Moca,
  • Darie Moldovan,
  • Delia Beatrice Oprean,
  • Răzvan Liviu Nistor

DOI
https://doi.org/10.3390/s21072266
Journal volume & issue
Vol. 21, no. 7
p. 2266

Abstract

Read online

This paper presents a sentiment analysis solution on tweets using Recurrent Neural Networks (RNNs). The method is can classifying tweets with an 80.74% accuracy rate, considering a binary task, after experimenting with 20 different design approaches. The solution integrates an attention mechanism aiming to enhance the network, with a two-way localization system: at memory cell level and at network level. We present an in-depth literature review for Twitter sentiment analysis and the building blocks that grounded the design decisions of our solution, employed as a core classification component within a sentiment indicator of the SynergyCrowds platform.

Keywords