IEEE Access (Jan 2019)
Dynamics of Rogue Waves for a Generalized Inhomogeneous Third-Order Nonlinear Schrödinger Equation From the Heisenberg Ferromagnetic System
Abstract
In this paper, dynamics of the higher-order rogue waves for a generalized inhomogeneous third-order nonlinear Schrödinger equation is investigated by using the generalized Darboux transformation. Based on the Lax pair, the first-order to the third-order rogue wave solutions are derived through algebraic iteration starting from a seed solution. Nonlinear dynamical properties of rogue waves are analyzed on the basis of 3-D plots and density profiles. The new arrangement of the higher-order rogue waves is obtained. It is helpful to study the phenomenon of rogue waves in the Heisenberg ferromagnetic system.
Keywords