Animals (Feb 2022)

Biohydrogenation Pathway of α-Linolenic Acid in Rumen of Dairy Cow In Vitro

  • Guoxin Huang,
  • Liya Guo,
  • Meiqing Chen,
  • Xufang Wu,
  • Wenhao Tang,
  • Nan Zheng,
  • Shengguo Zhao,
  • Yangdong Zhang,
  • Jiaqi Wang

DOI
https://doi.org/10.3390/ani12040502
Journal volume & issue
Vol. 12, no. 4
p. 502

Abstract

Read online

The t9,c12,c15-C18:3 as an isomer of α-linolenic acid (c9,c12,c15-C18:3; ALA), has been recently detected in milk, but has not been found in the rumen. This study hypothesized that it may be a biohydrogenation product of ALA in rumen and aimed to explore whether it was present in the rumen and help to understand the rumen biohydrogenation mechanisms of ALA. The in vitro experiment included two treatments, a control check (CK group) with 50 µL ethanol added, and ALA group with 50 µL ethanol and 2.6 mg ALA (ALA addition calculated by 1.30% of dry matter base of diet); each sample of fermentation fluid had the composition of C18 fatty acids analyzed at 0, 0.5, 1, 2, 3, 4, 5, and 6 h. The results showed that no t9,c12,c15-C18:3 was detected in the CK group, but ALA addition increased the concentration of t9,c12,c15-C18:3 in fermentation fluid. The content of t9,c12,c15-C18:3 peaked 1 h after fermentation, then declined gradually. At 1 h, no t9c12c15-C18:3 was detected in the fermentation fluid of the CK treatment. The results suggested that ALA converted to the isomer t9,c12,c15-C18:3 through biohydrogenation in the rumen. The addition of ALA can also increase the concentration of t9,c12-C18:2, c9,t11-C18:2, c12-C18:1, t11-C18:1, t9-C18:1, and c6-C18:1 in fermentation fluid. It was concluded using an in vitro experiment that t9,c12,c15-C18:3 was a product of rumen biohydrogenation of ALA.

Keywords