Contributions to Geophysics and Geodesy (Jun 2016)

The course, stratification and possibility of simulating relative air humidity in winter wheat stand

  • Jana KRČMÁŘOVÁ,
  • Radovan POKORNÝ,
  • Tomáš STŘEDA

DOI
https://doi.org/10.1515/congeo-2016-0010
Journal volume & issue
Vol. 46, no. 2
pp. 137 – 154

Abstract

Read online

The aim of this study was: (i) long-term (2010, 2011 and 2013) evaluation of the relative air humidity in the winter wheat canopy, (ii) finding of relationships between relative air humidity in canopy and computed or measured meteorological values (precipitation totals, evapotranspiration, moisture balance, specific air humidity, volume soil moisture, % of available soil water content, value of soil water potential), (iii) testing of simulation of daily relative air humidity, based on selected meteorological values and potential evapotranspiration (FAO Penman-Monteith method) and actual evapotranspiration, (iv) testing of simulation of relative air humidity hourly values in the wheat canopy, (v) evaluation of dependence between relative air humidity and leaf wetness. The measurement was performed at the experimental field station of Mendel University in Žabčice (South Moravia, the Czech Republic). Data recording for wheat canopy was conducted by means of a meteostation equipped with digital air humidity and air temperature sensors positioned in the ground, effective height of the stand and in 2 m above the ground. The main vegetation period of wheat was divided into three stages to evaluate differences in various growing phases of wheat. The data from nearby standard climatological stations and from agrometeorological station in Žabčice were used for establishment of relationships between relative air humidity in winter wheat canopy and surrounding environment by correlation and regression analysis. Relative air humidity above 90% occurred substantially longer on the ground and at the effective height of the stand in comparison with the height of 2 m. By means of regression analysis we determined that the limit of 90% was reached in the canopy when at the climatological station it was just 60 to 90% for ground level and 70 to 90% for effective height, especially during the night.

Keywords